Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury
نویسندگان
چکیده
Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies that can prevent the resulting cascade of neurodegeneration.
منابع مشابه
Biomechanical analysis of blast-induced traumatic brain injury
Purpose: Blast-induced traumatic brain injury (bTBI) is one of the causes of death or permanent invalidity which can occur unexpectedly in both military and civilian populations. This study set out to conduct a combined Eulerian-Lagrangian computational analysis of the interaction between a single planar blast wave and a human head in order to assess the extent of intracranial shock w...
متن کاملDeep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities.Materials and Methods: Forty Male Wistar rats (220–2...
متن کاملTherapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury
Objective(s): Cognitive defects such as learning and memory impairment are amongst the most repetitious sequelae after sever and moderate traumatic brain injury (TBI). It was suggested that ellagic acid (EA), an innate phenol product, display neuroprotective properties against oxidative and inflammatory damages after brain injury. The object of the current study was therapeutic properties of EA...
متن کاملارتباط بین غلظت هموگلوبین و مورتالیتی در بیماران ترومای مغزی بستری در بخش مراقبتهای ویژه
Background and Objective: Traumatic brain injury is one of the main causes of mortality and morbidity worldwide and the second leading cause of death in Iran. About half of patients with traumatic brain injury have hemoglobin of less than 9 g/dL during the first week of admission. With regard to the secondary damage to brain tissues caused by anemia and blood transfusion complications, we decid...
متن کاملThe Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat
Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...
متن کامل